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Multiparticle dynamics in one-dimensional asymmetric exclusion processes with disorder is investigated
theoretically by computational and analytical methods. It is argued that the general phase diagram consists of
three nonequilibrium phases that are determined by the dynamic behavior at the entrance, at the exit and at the
slowest defect bond in the bulk of the system. Specifically, we consider dynamics of asymmetric exclusion
process with two identical defect bonds as a function of distance between them. Two approximate theoretical
methods that treat the system as a sequence of segments with exact description of dynamics inside the
segments and neglect correlations between them, are presented. In addition, a numerical iterative procedure for
calculating dynamic properties of asymmetric exclusion systems is developed. Our theoretical predictions are
compared with extensive Monte Carlo computer simulations. It is shown that correlations play an important
role in the particle dynamics. When two defect bonds are far away from each other the strongest correlations
are found at these bonds. However, bringing defect bonds closer leads to the shift of correlations to the region
between them. Our analysis indicates that it is possible to develop a successful theoretical description of
asymmetric exclusion processes with disorder by properly taking into account the correlations.
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I. INTRODUCTION

In recent years a significant attention has been devoted to
investigation of low-dimensional asymmetric simple exclu-
sion processes �ASEPs� �1–5�. They play a critical role for
understanding fundamental properties of nonequilibrium
phenomena in chemistry, physics, and biology. ASEPs have
been widely utilized for description of traffic phenomena �4�,
kinetics of biopolymerization �6�, protein synthesis �7–10�,
and biological transport of motor proteins �11,12�. The ad-
vantage of using asymmetric exclusion processes for study-
ing mechanisms of nonequilibrium phenomena is due to the
fact that some homogeneous versions of ASEPs can be
solved exactly via a matrix-product approach and related
methods �1,5,13�. In addition, understanding of processes in
ASEPs can be achieved by utilizing a phenomenological do-
main wall approach �14�. In order to have a more realistic
description of different nonequilibrium phenomena ASEPs
with inhomogeneous distribution of rates are required. How-
ever, there is a limited number of studies dealing with ASEPs
with disorder in the transition rates at sites �static impurities�
�8,9,15–33� and with disorder associated to particles’s hop-
ping rates �moving impurities� �34–38�. In this case exact
solutions are not obtained, and extensive Monte Carlo com-
puter simulations and approximate theories are utilized in
order to understand particle dynamics. Disorder has a strong
effect on the behavior of ASEPs. Even a single defect bond
far away from the boundaries lead to dramatic effects in the
stationary properties both in closed �15,18� and open bound-
ary conditions �19�. It was shown recently that the dynamics
of ASEPs is also influenced by several defects that are close
to each other �8,10,32�, although the mechanism of this phe-
nomenon is not well understood. This interaction between
defects is important for understanding several biological

transport phenomena �8,10�. Recently the particular case of
two defects has been extensively investigated by Monte
Carlo simulations �10�. It has been shown that the system
current exhibits a notable dependence on the distance be-
tween defects with equal hopping rates. Moreover, it was
found that the density profile is linear between defects which
marks the existence of wandering shock between defects
�10�. The case of two defective sites with equal rate has been
generalized to include extended objects �31�. Theoretical ef-
forts to analyze ASEPs with disorder have been mostly di-
rected to the cases with a single or few defects �19,8,32�. In
Ref. �19� ASEP with open boundaries and with a local inho-
mogeneity in the bulk has been investigated by arguing that
the defect bond divides the system into two coupled homo-
geneous ASEPs. This theoretical approach can be called a
defect mean field �DMF� because the mean-field assumptions
are made only at the position of local inhomogeneity. Al-
though a good agreement with computer simulations has
been found, there were significant deviations in statistical
properties of the phase with the maximal current that was
attributed to the neglect of correlations at the defect bond in
the proposed theory �19�. A related approach called the inter-
acting subsystem approximation �ISA� has been proposed in
Ref. �32� for ASEPs with a single defect or several consecu-
tive defects �bottleneck�. Here it was suggested that due to
the defect bonds there are three segments in the system: two
homogeneous ASEPs are coupled by a segment that includes
all sites that surround defect bonds. Explicit results have
been used inside the segments, and mean-field assumptions
have been utilized for particle dynamics between the seg-
ments. A better agreement with Monte Carlo computer simu-
lations has been found, and the method was also successfully
applied to describe interactions of defects with boundaries. It
was argued that ISA can be used for analyzing properties of
general ASEPs with disorder �32,33�. However, ISA has not
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been applied for the systems with two defects at finite dis-
tances from each other, and because of this observation it is
difficult to apply ISA for understanding mechanisms of more
complex inhomogeneous asymmetric exclusion processes. A
slightly different method of calculations has been proposed
by Chou and Lakatos �8�, who applied a finite segment
mean-field theory �FSMFT�. According to this approach, the
segment of finite length n that covers the defect and sur-
rounding sites is considered, and its dynamics is fully de-
scribed by solving explicitly for eigenvectors of the corre-
sponding transition rate matrix. The segment is then coupled
in the mean-field fashion to the rest of the system. However,
this approach becomes numerically quite involved for cluster
sizes larger than �20, and it also limits its applicability. Dif-
ferent studies of asymmetric exclusion processes with disor-
der point out to importance of correlations in the system. It is
reasonable to expect that correlations are stronger near the
slow defect sites. However, it is not clear how far from the
local inhomogeneity and how fast these correlations decay.
In addition, it is also unclear how correlations from two close
defects affect each other. The goal of this paper is to inves-
tigate the role of correlations in dynamics of ASEPs with
disorder. By analyzing several analytical approaches in com-
bination with extensive Monte Carlo computer simulations it
will be shown that a successful description of disordered
driven diffusive systems can be achieved by properly ac-
counting for correlations near the defect bonds.

II. MODEL AND THEORETICAL DESCRIPTION

We investigate a totally asymmetric simple exclusion pro-
cesses with disorder. In the one-dimensional lattice the par-
ticle at the site i can jump forward with the rate pi if the next
site i+1 is unoccupied, otherwise it stays at the same place.
The particle can enter the system with the rate � if the site is
empty, and it can also exit the lattice with the rate �. When
all pi=1 we have a homogeneous ASEP for which dynamic
properties are known explicitly from exact solutions �1,3�.
ASEPs with disorder correspond to the situation when there
is inhomogeneities in the transition rates, and pi are drawn
from arbitrary distributions. Numerous theoretical and com-
putational studies indicate that in the limit of large times the
dynamics in the system can be determined by comparing
entrance rate, exit rates and the transition rate at the slowest
defect bond �19,33�. This observation has a significant con-
sequence for properties of ASEPs with disorder, yielding a
generic phase diagram with three phases. When the entrance
is a rate-limiting process the system can be found in the
low-density phase, while for slow exiting the high-density
phase governs the system. If the rate-limiting process is the
transition via the slowest defect bond the system is in the
maximal-current phase. In this maximal-current phase, a seg-
regation of density profile into macroscopic high and low
regions occurs at the location of slowest defect bond. Other
defects only perturb the density profile on a local scale.
However, when the number slowest defect bonds exceeds
two or more the above picture needs modification. Further-
more, the previous studies on disordered ASEPs lack inves-
tigations on correlation effects induced by defects. To ad-

dress these questions, we analyze the simplest model with
two identical defects in the bulk of the system far away from
the boundaries. It was shown earlier �32� that positioning of
the slow defects close to the boundaries leads only to rescal-
ing of the effective entrance and/or exit rates, and we will not
consider this possibility in this paper. Note that in this paper
we are using terms of defect bonds and defect sites. To
clarify, we define the defect site as the site i from which the
particle hopes to the site i+1 with the rate q�1. Corre-
spondingly, the bond connecting sites i and i+1 is a defect
one.

A. Defect mean-field theory

Consider a totally asymmetric exclusion processes with
open boundaries and with two slow defective sites at i=d1
and i=d2 at a distance d with d2−d1=d �separated by d−1
normal sites�, as shown in Fig. 1. At the defects the particle
jump to the right with the rate q�1, in all other sites the
hopping rate is equal to 1. It can be seen that two defects
divide the system into three segments.

The particle dynamics inside each segment can be calcu-
lated exactly, however, it is assumed that there are no corre-
lations between the segments. If entrance to the lattice is the
slowest process then the system can be found in low-density
�LD� phase with stationary current and bulk densities given
by

J = ��1 − ��, �bulk = � . �1�

Similarly, when the exit becomes a bottleneck process the
system is in high-density �HD� phase with

J = ��1 − ��, �bulk = 1 − � . �2�

Note that in both phases particle densities near the defect
bonds will deviate from the bulk values. The more interest-
ing case is when the dynamics in the system is governed by
transitions via local inhomogeneities. In this phase, which
has the maximal current, we expect to have density phase
segregation similar to the case a single defect ASEPs. We
emphasize that all our investigation in this paper is on this
maximal-current phase. First consider a lattice segment after
the second defect. The dynamics in this part of the system is
controlled by the entrance of particle via the defect, then it
has a low-density profile with unknown bulk density �*

�1 /2. Similar arguments can be used to analyze the density
profile in the segment before the first defect. Here the flux is
limited by the exit rate via the local inhomogeneity, leading
to the high-density phase. Since at stationary-state condition
the flux through any segment should be the same J=�*�1

111α βq q

d1 d2

d

FIG. 1. �Color online� Schematic of ASEP with two defective
sites at i=d1 and i=d2 separated by d−1 normal sites, i.e., d2−d1

=d. The reduced hopping rates at each defect is equal to q. In
normal sites the hoping rates are 1.
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−�*�, the bulk density in this segment is equal to 1−�*. The
region between two defects can be viewed as asymmetric
exclusion process on a finite lattice with d sites. The effec-
tive entrance and exit rates to this segment can be easily
evaluated using our mean-field assumptions

�eff = �eff = q�1 − �*� . �3�

The stationary properties of the lattice segment with d
sites between the defects can be evaluated explicitly by uti-
lizing exact results for finite-size ASEPs �5�. Specifically, the
particle flux is given by

J0��,�,d� =
Rd−1�1/�� − Rd−1�1/��

Rd�1/�� − Rd�1/��
, �4�

where the function Rd�x� is defined as

Rd�x� = �
p=2

d+1
�p − 1��2d − p�!
d!�d + 1 − p�!

xp. �5�

To understand the density profile in the segment we can
use a domain-wall picture of asymmetric exclusion processes
�14�. Since the entrance and exit rates are the same �see Eq.
�3��, the domain wall that separates high-density and low-
density blocks performs an unbiased random, leading to a
linear density profile with a positive slope. Explicit expres-
sions for particle densities can also be found in Ref. �5�. The
full description of dynamics in ASEPs with two defects is
obtained by solving for the unknown parameter �*. It can be
done by applying the condition of stationarity in the particle
flux

J = �*�1 − �*� = J0��eff,�eff,d� . �6�

This equation can always be solved analytically or nu-
merically exactly for any number of sites between local in-
homogeneities, leading to stationary particle currents and
density profiles. It is important to note that there is a particle-
hole symmetry in the system because defects are far away
from the boundaries. To illustrate our approach let us calcu-
late dynamic properties of ASEPs with two defects for sev-
eral values of the parameter d. First, let us analyze the sim-
plest case of d=1 with consecutive defects in the bulk. It can
be shown that for this system

J0��,�,d = 1� =
��

� + �
. �7�

Then Eq. �6� can be written as

�*�1 − �*� = q�1 − �*�/2, �8�

which produces simple expressions for the bulk density and
the particle current

�* = q/2, J = q�2 − q�/4. �9�

The density l at the site between the defects can also be
found from the condition that the flux via this site, J=ql�1
−�*�, should be equal to the flux through other segments,
and this yields

l = �*/q = 1/2. �10�

This result could also be obtained from the particle-hole
symmetry arguments. Note that for q=1 we obtain �*=1 /2
and J=1 /4 as expected for homogeneous ASEPs in the
maximal-current phase. For d=2 there are two lattice sites
between the defects, and stationary properties of this system
can also be obtained analytically. From Eq. �5� one can easily
derive

R1�x� = x2, R2�x� = x2 + x3, �11�

which produces the following expression for the current in
the segment between the defects:

J0��,�,d = 2� =

1

�
+

1

�

1

�
+

1

�
+

1

�2 +
1

�2 +
1

��

. �12�

Using the expression for the effective entrance and exit
rates for the segment between the inhomogeneities �see Eq.
�3��, the condition for the stationary current leads to

�*�1 − �*� =
2q�1 − �*�

3 + 2q�1 − �*�
. �13�

This quadratic equation can be solved, and taking the
physically reasonable root we obtain

�* =
2q + 3 − �9 + 12q − 12q2

4q
, �14�

J =
8q2 − 6q − 9 + 3�9 + 12q − 12q2

8q2 . �15�

It can be checked that for q=1 these equations reduce to
expected relations �*=1 /2 and J=1 /4. We can also calculate
the densities l1 and l2 at the sites between the defects. Be-
cause of the particle-hole symmetry one can argue that

l2 = 1 − l1 �16�

and the density at the first site can be found by analyzing the
current via the first defect

J = q�1 − �*��1 − l1� = �*�1 − �*� . �17�

Then we have

l1 = 1 −
�*

q
=

4q2 − 2q − 3 + �9 + 12q − 12q2

4q2 . �18�

We have solved Eq. �6� for the case d=3. In this case we
have

R3�x� = 2x2 + 2x3 + x4. �19�

After some lengthy but straightforward algebra we arrive
at the following cubic equation for �*:

4q2��*�3 − �8q2 + 6q���*�2 + �6q2 + 6q + 4��* − q�3 + 2q�

= 0. �20�

For brevity we avoid writing the answer explicitly. Analyti-
cal results for ASEP with two defects can also be obtained in
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the limit of very large distances between the inhomogeneities
�d�1�. In this case the segment between the defects can be
viewed as a homogeneous ASEP in the state of the phase
transition between high-density and low-density phases
��eff=�eff�. This corresponds to a linear density profile for
the segment between the defects. Then it leads to the follow-
ing expression for the current:

�*�1 − �*� = q�1 − �*��1 − q�1 − �*�� �21�

and finally we obtain

�* =
q

1 + q
, J =

q

�1 + q�2 . �22�

These results are identical to stationary properties of
ASEP with only one local inhomogeneity far away from the
boundaries obtained using DMF approximation �19�, sug-
gesting that two defects at large distances do not affect each
other �8�. For a general d Eq. �6� leads to a polynomial
equation of order d for the unknown �*. For d�3 this equa-
tion can be solved numerically to find the acceptable answer.
In Fig. 2 we have sketched the behavior of current J as a
function of q for d=1, 2, and 3 and have compared them to
the results obtained via Monte Carlo simulations. As ex-
pected J is an increasing function of both q and d. DMF
notably underestimates the current in comparison to the MC
simulation especially in the intermediate values of q.

The curve for large d corresponds to mean-field approxi-
mation. In simulations we have taken �=�=0.6

B. Interacting subsystem approximation

Interacting subsystem approximation �ISA� is another
method of calculating stationary properties of ASEPs with a
single defect or a single bottleneck developed by Greulich
and Schadschneider �32�. It can be easily extended to the
case of asymmetric exclusion processes with two defects
separated by d lattice sites. Similarly to DMF this method
divides the lattice into several segments. Particle dynamics
inside the segments is treated exactly, while between the seg-

ments mean-field assumptions are made. ISA differs from
DMF in the defining of segments. In DMF the position of
defects separates different parts, and there is always three
segments in the system. In ISA the sites that are connected
by the defect bond are put together in one segment, as shown
in Fig. 3.

For d=1 there are also three parts in the lattice, and the
middle segment has three sites. For d=2 there are four seg-
ments and two middle segments �with two lattice sites each�
border each other. For any larger distance between local in-
homogeneities ISA assumes five segments: see Fig. 3. Note
that the size of the middle segment is equal to d−2.

Let us consider a general case of five segments �d�2� for
computation of stationary properties of ASEPs with two de-
fects. As was argued above, the system can be found in one
of three phases: LD, HD, or HD/LD �maximal current�.
Since the derivation of properties in HD and LD phases is
the same as for DMF approach, we concentrate on descrip-
tion of the maximal-current phase. As before we assume that
the bulk density in the segments 1 and 5 are 1−�* and �*,
correspondingly. Let us define l1 and l2 as the probabilities to
find the particles at the corresponding sites of the segment
around the first defect. Similarly, l3 and l4 describe densities
in the segment around the second defect bond. For the
middle segment with d−2 lattice sites we define xi for i
=1, . . . ,d−2 as the particle density at ith site of this segment.
As for DMF approach, the existing particle-hole symmetry
simplifies calculations significantly. Specifically, it suggests
that

l4 = 1 − l1, l3 = 1 − l2, xi = 1 − xd+1−i. �23�

The overall particle current in the system can be written
as

J = �*�1 − �*� , �24�

while due to the mean-field assumptions the current between
the first and the second segments is equal to

J12 = �1 − l1��1 − �*� = �2�1 − �*� , �25�

where �2 is the effective rate to enter the second segment. At
large times we expect to find the system in the stationary
state, i.e., J=J12, yielding

1 − �2 = l1 = �1 − �*� . �26�

The current between segments 2 and 3 can be presented in
several ways,

q
0 0.25 0.5 0.75 1

0

0.05

0.1

0.15

0.2

0.25

DMF, d = 1
DMF, d = 2
DMF, d = 3
MC, d = 1
MC, d = 2
MC, d = 3
MF, large d

J

FIG. 2. �Color online� J vs q for d=1,2 ,3 obtained by the DMF
method and MC simulation.

1α β
d

1 1

l1 l 2

q q

l 3 4l
segment 3 segment 5segment 1

segment 2 segment 4

FIG. 3. �Color online� interacting subsystems connected via
mean-field assumption. For d�2 the system is divided into five
segments.
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J23 = l2�1 − x1� = �2l2 = �3�1 − x1� , �27�

with �2 being the effective exit rate from the segment 2,
while �3 is the effective rate to enter the segment 3. When
the system reaches stationary phase J=J23 and we obtain

�2 = 1 − x1, �3 =
�*�1 − �*�

1 − x1
. �28�

Because of the particle-hole symmetry the effective en-
trance and exit rates from segment 3 are the same, �3=�3.
The particle current via the ASEP segment with N sites and
with entrance and exit rates � and �, respectively, J�� ,� ,N�,
can be calculated explicitly �5�. Then to obtain stationary
properties of ASEP with two defects in the maximal-current
phase the following system of equations should be solved,

�*�1 − �*� = qJ�1 − �*

q
,
1 − x1

q
,2	 ,

�*�1 − �*� = J��*�1 − �*�
1 − x1

,
�*�1 − �*�

1 − x1
,d − 2	 , �29�

where �* and x1 are two unknown variables. The expression
on the right side of the first equation describes the current
inside segments 2 and 4. Because the hopping rate is q�1,
the effective entrance and exit rates must be rescaled by the
same factor. The right side of the second equation gives the
current inside segment 3. The application of ISA for d=1 and
d=2 cases is different. In the case of two consecutive defect
bonds the system is divided only in three segments. The
middle segment has three sites that surround defect bonds. In
the HD/LD phase the effective entrance rate is �2=1−�*,
and the stationary properties can be obtained by solving only
one equation

�*�1 − �*� = qJ�1 − �*

q
,
1 − x1

q
,3	 . �30�

Using Eqs. �4� and �5� for the middle segment with equal
entrance and exit rates gives us

�*�1 − �*� =
q�1 − �*��2�1 − �*� + 3q�

2�2�1 − �*�2 + 3q�1 − �*� + 2q2�
, �31�

which can be simplified into the following expression:

4��*�3 − 2�3q + 4���*�2 + 4�q + 1�2�* − q�3q + 2� = 0.

�32�

This cubic equation can be solved explicitly, yielding

�* = �3q + 4 + �4 − 3q2�/D + D�/6, �33�

where

D = �− 8 + 9q2 − 27q3 + 3�3�16q3 − q4 − 18q5 + 28q6�1/3.

�34�

ISA also works differently in the case of d=2. There are
four segments in the system, and because of the neglect of
correlations between segments 2 and 3 we have

l2�1 − l3� = l2
2 = �*�1 − �*� . �35�

Then the effective entrance rate to the segment 2 is �2
=1−�*, and the effective exit rate is equal to �2= l2

=��*�1−�*�. The unknown parameter �* is determined from
the equation for the stationary current

�*�1 − �*� = qJ��2

q
,
�2

q
,2	 . �36�

Substituting the values of the effective boundary rates and
utilizing Eq. �12� we obtain

�*�1 − �* + ��*�3/2 = q�1 − �* �37�

which can be recast in the form of a cubic equation

2��*�3 − �2q + 1���*�2 + �q2 + 2q��* − q2 = 0. �38�

This equation can be solved analytically but for brevity
we do not write the solution. It can also be shown that in the
limit of d�1 ISA method with two defects produces the
stationary current and bulk densities which are indistinguish-
able form the situation with only one defect �32�

�* = �3q + 2 − �9q2 − 4q + 4�/4,

J = �2q − 9q2 + 3q�9q2 − 4q + 4�/8. �39�

Let us now exhibit the dependence of J on q in the ISA
method. In Fig. 4 we have drawn J vs q for d=1,2 and have
compared the results to those obtained by DMF method and
MC simulations. In general, ISA method gives a better esti-
mation of current compared to DMF at least for the small
values of d we have considered.

III. CORRELATIONS NEAR DEFECT

A. Monte Carlo simulations

In this section we aim to investigate correlations in the
vicinity of defects. We restrict ourselves to adjacent two-
point correlations and will present our results for the general
two-point and multipoint correlations in a future work. Let

q
0 0.25 0.5 0.75 1

0

0.05

0.1

0.15

0.2

0.25

ISA, d = 1
ISA, d = 2
ISA, d = large
MC, d = 1
MC, d = 2
MF, d = large

J

FIG. 4. �Color online� Current vs q for d=1,2 and a large d
obtained within ISA method and MC simulation. In simulations we
have taken �=�=0.6.
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us now introduce the normalized connected two-point corre-
lation function Ci between the neighboring sites i and i+1.
This quantity is defined as follows:

Ci =

�i�i+1� − 
�i�
�i+1�

�
�i
2� − 
�i�2�
�i+1

2 � − 
�i+1�2
i = 1, . . . ,L − 1. �40�

The function Ci measures the correlation and it lies be-
tween −1 and 1. Negative values correspond to anticorrela-
tion between neighboring sites whereas a positive value sig-
nifies correlation. The values near zero are regarded as
uncorrelated. Figure 5 depicts the simulated profiles of cor-
relation at d=10, 100 for three values of q. The system size
is L=500 and we have taken �=�=0.6 in all our simulation
results unless stated otherwise. The system has been updated
for T Monte Carlo steps. Each step consists of L moves. In
each move, we randomly choose a site and update its status
according to ASEP rules described above. We discard the
first T

5 steps to ensure reaching steady state, and we have
accumulated data separated by 10 MC steps to avoid any
possible temporal correlations. The value of T is taken 108 in
our simulations.

Two defects are symmetrically placed with respect to
chain midpoint. We observed that correlations are large in
sites between the defects. There is a rather strong anticorre-
lation in the sites immediately after the first defect and be-

fore the second defect. The correlations are growing up for
middle sites where the maximum value is achieved. It can be
seen that correlations are greater when d is increased. This is
unexpected and counterintuitive because increasing the dis-
tance between the defects reduces their interaction. It has
been observed via MC simulations that when d is increased
the current reaches asymptotically to its mean-field value
JMF= q

�1+q�2 �10,31�. Therefore, one expects the correlations to
exhibit a reducing behavior with respect to distance d but
this is not observed in our simulations. To have a deeper
understanding, we have sketched the behavior of correlation
profile upon varying the distance d for q=0.1 and q=0.3 in
Fig. 6.

For fixed values of q, increasing the distance d between
the defects gives rise to enhancement of correlations or an-
ticorrelations. For instance, the correlation value in the
middle point rises from roughly 0.5 at small d�10 to 0.65
for d�100. It can be observed that there is no notable dif-
ference in correlation values for d larger than 100. Moreover,
the correlations are always greater than anti-correlations. By
increasing q, the correlations/anti-correlations are notably re-
duced in values. This is expected since in the limit of homo-
geneous ASEP where q→1 the correlation functions become
very small. Here we wish to make a pause and have a dis-
cussion on correlations in normal ASEPs. In fact the middle
segment between two defects can be regarded as an ASEP
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chain with length d with equal entrance and exit rates. To the
best of our knowledge, correlations in ASEP with random
sequential update, has only been analytically discussed by
Derrida and Evans who obtained exact analytical expression
for a general two-point function and made a conjecture to
generalize their findings to n-point functions �39�. Their
study was restricted to the special case �=�=1 and they
found that long range correlations persist in the bulk which
was attributed as a boundary effect. In order to see if the
large value of the connected two-point function survives in
the normal ASEP with equal entrance and exit rates, we per-
formed MC simulations. Our results show that when �=�,
the profile of Ci reaches a small constant �almost zero� in the
bulk. The correlations become large near boundaries. This
boundary behavior depends on whether �=��0.5 or �=�
�0.5. Figure 7 illustrates this aspect.

We recall that correlations in other types of update such as
parallel updating has been discussed in Refs. �16,17�. It is
worthwhile to examine the behavior of density profile be-
tween defects. Dong et al. have recently shown via extensive
MC simulations that the density profile takes a linear shape
between defects �10�. This behavior remains unchanged in
ASEP with extended objects �31�. For the sake of complete-
ness, we show some typical density profiles in Fig. 8.

The interesting point is the absence of boundary layer in
this phase-segregated regime. It would be illustrative to look
at the dependence of two-point correlation functions at some
particular sites on values of q and d. These results are
sketched in Fig. 9, where correlations at the first defect site
�d1�, its right-most site �d1+1�, and in the middle site of the
chain are considered.

Note that all correlations and anticorrelations approach
zero when q tends to 1. Moreover, increasing defect’s sepa-
ration d increases the correlations. The dependence on d is
more interesting. While the values of correlation functions
reach an asymptotic value at large d, the behavior is not
monotonous. Especially for Cd1+1 correlation increases up to
a maximum and then begin to decrease smoothly towards its
asymptotic value. The value of d where Cd1+1 is maximized
does not show a significant dependence on q. In can be

concluded that varying d can dramatically affect the system
characteristics as far as correlations are considered.

B. Analytical theory

Our simulation findings in the preceding section confirms
that in between the defects the correlations are notably
higher than other sites. In this section we try to develop a
theoretical framework to capture this feature. Suppose we
have two slow defects located in the bulk at sites k and l
�k� l�, respectively, both with rate q. The mean occupation
at site i in the steady state is denoted by ni= 
�i�, in which
�i=0,1 is the occupation number at site i. We assume that a
simple MF assumption, i.e., 
�i�i+1�= 
�i�
�i+1�=nini+1 holds
for all sites except i=k , . . . , l, i.e., defective sites themselves
and all the sites between them. At these sites the correlations
are strong enough to violate the simple mean-field assump-
tion. Let us introduce two-point correlation functions mi in
the following way:

mi = 
�i�i+1� . �41�

There are L+ l−k+2 unknowns, namely,
n1 ,n2 , . . . ,nL ,mk ,mk+1 , . . . ,ml and lastly the current J. In the
stationary state there exists L+1 equations among these un-
knowns. Let us label them by A0 to AL. These equations can
be obtained by expressing the current J in terms of the mean
site densities and two point correlators. The first equation A0
is J=��1−n1�. The equations Ai for i=1, . . . ,k−1 and i= l
+1, . . . ,L−1 have the following form:

J = ni�1 − ni+1� . �42�

Equation Ak is

J = q
�k�1 − �k+1�� = q�nk − mk� . �43�

Similarly, equation Al is given below

J = q
�l�1 − �l+1�� = q�nl − ml� . �44�

Equations Ai �i=k+1, . . . , l−1� have the following form:
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J = 
�i�1 − �i+1�� = �ni − mi+1� . �45�

Lastly equation AL is as follows:

J = �
�L� = �nL. �46�

We do not intend to add more equations. Unfortunately
the above equations are nonlinear and it would be a formi-
dable task to solve them analytically. Alternatively, we shall
utilize a numerical approach to solve the system of equations
by exploiting their recursive structure. This approach was
originally introduced in Ref. �29� in the context of disordered
ASEP and was later applied to the problem of two intersect-
ing ASEP chains �30�. According to this numerical scheme,
we assign a value to J. Having J, it is possible to iterate
equations �in the forward direction� and obtain n1 up to nk.
Then we proceed to find mk by incorporating the relation J
=q�nk−mk�. At this stage it is not possible to proceed further
because both nk+1 and mk+1 are unknown and we have only
one relation between them: J=nk+1−mk+1. In order to pro-
ceed, we approximate nk+1 in the following way. Consider
the rate equation for the two-point function 
�k�k+1� which is
governed by the following master equation:

d
�k�k+1�
dt

= 
�k−1�1 − �k��k+1� − 
�k�k+1�1 − �k+2�� . �47�

In the steady state, the left hand side becomes zero, and
therefore two terms on the right-hand side will be equal. To
proceed further we have to approximate three-point func-
tions. This is achieved by utilizing the cluster mean-field
assumption �40�. According to this assumption we replace
any three point function by the product of two-point func-
tions as follows:


ninjnk� =

ninj�
njnk�


nj�
. �48�

We then replace all two-point functions by the product of
one-point functions except mk= 
�k�k+1�. Then it is possible
to express 1−nk+2 in terms of nk−1, m1, and nk+1. After some
algebra a quadratic equation for nk+1 is obtained:

nk−1nk+1
2 − mknk−1nk+1 − mkJ = 0. �49�

The physically reasonable solution for this equation is given
by

nk+1 =

mk +�mk
2 +

4mkJ

nk−1

2
. �50�

Now it is possible to find mk+1 via equation J=nk+1−mk+1.
Analogous to the above procedure we can find nk+2 as fol-
lows:

nk+2 =
qmkmk+1 + ��qmkmk+1�2 + 4qJnknk+1

2 mk+1

2qnknk+1
. �51�

After having nk+2 we simply obtain mk+2 via equation J
=nk+2−mk+2. Now it would be possible to proceed iteratively
after taking into account some approximation. To this end we
recall the equality

d
�i�i+1�
dt

= 
�i−1�1 − �i��i+1� − 
�i�i+1�1 − �i+2�� . �52�

Putting the left-hand side equal to zero in the steady state,
utilizing cluster mean-field in three point functions and fi-
nally substituting mi+1 by mi+1=ni+1−J we arrive at the fol-
lowing equation:

ni+1 =
mi−1mi + ��mi−1mi�2 + 4Jni−1ni

2mi

2ni−1ni
. �53�

Note that we have approximated 
�i−1�i+1� by the mean-field
relation 
�i−1�
�i+1�. We can iterate equation �53� together
with mi+1=ni+1−J from i=k+2 to l−2 to find the corre-
sponding ni and mi up to i= l−1. The site i= l needs to be
treated separately. Following the same strategy we easily find

nl =
ml−2ml−1 + ��ml−2ml−1�2 + 4Jnl−2nl−1

2 ml−1

2nl−2nl−1
, �54�

from which one can compute ml. In a similar fashion, we can
obtain nl+1. We only should shift up all the subscripts in Eq.
�54� by 1. Now it is possible again to proceed iteratively to
the end of the chain and evaluate nL which gives us the
output current Jout. If the given value of input J were correct,
the output current Jout, which is �nL, should be the same, up
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to a given precision, as the input value of J. By systemati-
cally increasing the input J in an small amount 	J, we can
determine the correct J and correspondingly the mean densi-
ties n1 , . . . ,nL together with correlators mk , . . . ,ml. In Fig. 10
the dependence J on q obtained by the numeric scheme de-
vised above is sketched. For the sake of comparison, we
have augmented the figure with the analogous graphs ob-
tained by MF, DMF, ISA, and MC methods.

The result of the numerical scheme is almost identical to
ISA method. They both are in very good agreement with
Monte Carlo simulations. However, the numerical scheme
has an advantage over ISA method in the sense that it can
easily be implemented for any d, whereas finding the solu-
tion of the ISA nonlinear set of equations, i.e., Eq. �29� is not
an easy task even by employing advanced numerical meth-
ods. Finally in Fig. 11 we have sketched the dependence of J
on d obtained from MC simulation and the numeric scheme.

The results of the numeric method are in rather good
agreement with those obtained by MC simulations. J is an
increasing function of d and becomes saturated after some

short q-dependent distance. The results confirms the earlier
finding in Ref. �10�. Note that the length scale on which J
recovers its single-defect value is of the same order of mag-
nitude of the correlation length in the density profile near
boundaries. Finally we would like to add that our numerical
scheme is not capable of reproducing the profile of correla-
tors obtained via MC simulations. Figure 12 depicts the pro-
file of unnormalized adjacent two-point correlation function

�i+1�i�− 
�i+1�
�i� for two methods of simulation and numeri-
cal scheme.

We see that within the numerical framework both the
value and the extension of correlators are small in compari-
son to the simulation results. The reason lies in the imple-
mentation of a series of approximation in several places in
this numerical algorithm.

IV. SUMMARY AND CONCLUSIONS

An open ASEP chain with two defective sites with re-
duced hopping rates q�1 has been investigated. The system
current and mean site densities at defective sites and their
vicinities have been obtained by two analytical methods,
namely, the defect mean-field �DMF� method and the inter-
acting subsystem approximation �ISA�. Both methods com-
bine mean-field approach near defects with known exact so-
lutions. Our results are accomplished by extensive Monte
Carlo simulations. We focus on the phase-segregated phase
in which defects globally affect the system properties and the
system is not input-output rate limited but rather defect lim-
ited. MC simulations have revealed strong short ranged cor-
relations at the defective sites and at all the site between
them. Additionally, the profile of density between defects
takes a linear form which marks the existence wandering
shock in this intermediate region. In order to take into ac-
count these correlations, we have introduced a numerical ap-
proach which utilizes a cluster mean-field assumption. Com-
parison of the three methods show that ISA and the numeric
approach give a current value which is in a good agreement
with MC simulations. The DMF method, however, only
gives a good results compared to MC and the other two
methods for small q less than 0.1 which is due to strong
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FIG. 10. �Color online� Current vs q for d=2 obtained by vari-
ous analytical and numerical methods and MC simulation. J ap-
proaches to 0.25 when q tends to one in accordance to normal
ASEP.
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correlations. Furthermore, we have obtained the profile of
neighboring two-point correlation function throughout the
chain. It is shown that these two point correlators exhibit a
rather strong anticorrelation at the first defective site then
they grow to the middle of the defects and after that they
start diminishing. In general, two point correlators will tend
to a tiny value when q approaches 1. However, the depen-
dence of two point correlators for a fixed q as a function of
distance between defects is not monotonous. Despite reach-
ing to an asymptotic value for large distances, one observes a
peak at short distances for the two point correlators near
defects. Our theoretical analysis indicates that correlations
are critically important for dynamics of particles in disor-

dered ASEPs. It also shows that it is possible to devise an
approximate method that can take into account these corre-
lations, providing a satisfactory description of stationary
properties.
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